Genetic prion disease generally manifests with cognitive difficulties, poor muscle control and abrupt jerking movements of muscle groups and/or entire limbs. The three major phenotypes of genetic prion disease are genetic Creutzfeldt-Jakob disease (gCJD), fatal familial insomnia (FFI), and Gerstmann-Sträussler-Scheinker (GSS) syndrome. The most common cause of inherited prion diseases is the E200K mutation of the prion protein (PrP). It is often thought that this mutation causes disease by making PrP more susceptible to misfolding into a pathogenic shape (PrPSc).
However, new research from Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center (BMC) has found that the architecture of neuron-to-neuron contact sites, known as synapses, is altered in neurons expressing this mutant PrP in the absence of PrPSc. This suggests that a loss or change in PrP function may contribute to the disease phenotype.
The study is published in the journal Stem Cell Reports.
“Our findings suggest that there could be detectable abnormalities in neurons long before the primary symptoms of inherited prion diseases appear,” explained co-corresponding author David A. Harris, MD, Ph.D., the Edgar Minas Housepian professor and chair of the department of biochemistry & cell biology at the school.
Harris and his colleagues made a large library of induced pluripotent stem cells (iPSCs) (blood cells that have been reprogrammed back into an embryonic-like pluripotent state that enables the development of an unlimited source of any type of human cell needed for therapeutic purposes) from a family harboring this mutation, and differentiated them into neurons.
By Boston University School of Medicine
Article can be accessed on: MedicalXpress