Researchers from Children’s Hospital of Philadelphia (CHOP) and Stanford University have revealed the molecular structure of TRACeR-I, a protein platform for reprogramming immune responses. A better understanding of its structure may help optimize designs for the platform, which can be used to develop cancer treatments by either directly modifying immune cells or by creating proteins that help immune cells locate cancer cells. The findings were published in the journal Nature Biotechnology.
Immunotherapy presents a promising strategy for treating cancer, autoimmune diseases and viral infections, but its effectiveness depends on its ability to specifically target diseases’ cells. Monoclonal antibodies are widely used because they can target antigens proteins generated by cancer cells that trigger an immune response on the surface of diseased cells, but uniquely expressed antigens found on the surface are sparse.
Another potentially powerful target involves fragments of these proteins that may be presented on the tumor cell surface through the presentation of peptides on the major histocompatibility complex (MHC), which displays pieces of suspicious material like parts of a virus or cancer cells on the surface of our cells.
Researchers at Stanford made a breakthrough with the development of TRACeRs, platforms that recognize many different versions of these MHC proteins. TRACeRs act as “master keys” that can open a variety of “locks” posed by these MHC proteins and then treat the appropriate diseased cells while sparing healthy cells.
By Children’s Hospital of Philadelphia
Article can be accessed on: MedicalXpress