Coronavirus: South African Entrepreneurs to Transform COVID-19 Testing Process

Two South African entrepreneurs have developed a ground-breaking testing kit that promises to significantly speed up the process of identifying positive COVID-19 cases.

Allan Gray Orbis Foundation Fellows Daniel Ndima and Dineo Lioma have developed a testing kit that provides results in just 65 minutes, through their company CapeBio.

Testing is a pillar of any campaign against coronavirus, not only because it identifies infected individuals but because it also provides an idea of how the virus may be developing within the country. Once scientists potentially understand its spread, the government can plan resources accordingly.

This is why the qCPR kits developed by CapeBio are hailed as a massive breakthrough, with critical implications for the country’s ability to weather the current crisis

“The ability to obtain rapid test results allows us to gain a clearer picture of viral infections so that we are able to introduce interventions with greater effectiveness,” explains Daniel Ndima, CEO of CapeBio.

“This will remain important even after lockdown, as South Africa has a population of over 55 million people who will need to be monitored on an ongoing basis.”

A scientist with a special interest in structural biology, Ndima says that the development of the kits represents a spinoff of the work he has dedicated the past 12 years of his life to.

“Our kits help pathologists isolate and identify a virus’s DNA or genetic material from an infected person. This makes it possible to detect the virus accurately in a laboratory.”

As a locally manufactured product, the qCPR could mitigate the reliance on overseas imports, ensuring that testing reagents could be accessed quickly and without a wait. They are also more affordable than international products. Most importantly, CapeBio’s product makes it possible to obtain test results in just 65 minutes, compared to the usual three hours.

Collaboration for solutions

While efforts have been made to reduce the spread of the virus, Ndima points out that the impact of the crisis on our economy is just as concerning as the toll on our healthcare systems.

With this in mind, Ndima says that entrepreneurs would do well to consider their offerings and tactics, so they are better suited to a drastically changed ‘post coronavirus’ world. One of the hallmarks of this world is collaboration, he notes.

CapeBio has benefited from collaboration it with the Department of Science and Innovation’s COVID-19 response team, where experts from universities and R&D centres around the country have been given a platform to share ideas and capabilities in the search for viable solutions. But this is not the only mentorship Ndima has received – he has been guided along his entrepreneurial journey by the Allan Gray Orbis Foundation Fellowship Programme.

The Fellowship Programme is one of three programmes the Foundation offers in pursuit of creating a pipeline of responsible entrepreneurs. The Foundation provides Fellowship recipients, known as Allan Gray Candidate Fellows, funding for university studies as well as access to support and development to cultivate an entrepreneurial mindset. These programmes run throughout the academic year alongside the Candidate Fellow’s university studies.

The post-coronavirus world offers an opportunity for businesses to reimagine their offerings, believes Ndima.

“All of us need to go back to the drawing boards, rethink tactics, collaborate and rebuild, using the benefits offered by 4IR tools to create high impact businesses. This global pandemic is presenting us with serious health and economic threats, but I think it could present us with stimulated business mindsets going into the new world – so that, hopefully, we can build businesses rooted in kindness to all our people and a sense of responsibility and patriotism to our nation,” he concludes.

 

Story by: Tech Financials

CRISPR Quashes Cancer in Mice

The paper
L. Jubair et al., “Systemic delivery of CRISPR/Cas9 targeting HPV oncogenes is effective at eliminating established tumors,” Mol Ther, 27:2091–99, 2019.

When the human papillomavirus enters a cervix, it doesn’t lyse cells or cause inflammation. While some strains can cause genital warts, in most cases the body clears the virus without much fuss. But “in an unfortunate number of people, the virus gets stuck,” says Nigel McMillan, a cancer researcher at Griffith University in Queensland, Australia. Even 15 or 20 years after infection with certain human pap-illomavirus (HPV) strains, cervical and other cancers can develop as a result.

Special stealth liposomes with a polyethylene glycol (PEG) coating that serves to hide the liposomes from the immune system are injected into mice with tumors (1). There, the PEG covering spontaneously falls off (2), allowing the liposomes to merge with cells and deliver CRISPR-Cas9 gene editing machinery (3). The system is designed to slice the powerful oncogene E7 (4), triggering apoptosis (5) and wiping out the tumors.
Illustration by KELLY FINAN (taken from The Scientist)

Looking for a new way to treat these cancers, McMillan focused on two oncogenes, E6 and E7, that HPV delivers to host cells. If E6 and E7 are turned off, cancer cells will not survive—a phenomenon known as oncogene addiction. In the early 2000s, McMillan and others used short interfering RNAs (siRNAs) to reduce levels of the mRNA products of these two oncogenes. This treatment killed cancer cells in vitro, but there was no effective and commercially available way to get the siRNA to tumors in a live animal.

So in 2009, McMillan and his colleagues began working with something called stealth liposomes. Unlike regular liposomes, which are spherical phospholipid containers that researchers can use to deliver drugs into cells but which are often targeted by the immune system to be removed from the body, these liposomes are coated with a polyethylene glycol (PEG) layer that’s nontoxic and non-immunogenic. In a mouse model that had been injected with cancer cells, tumors shrank considerably when the animals were treated with siRNA-loaded stealth liposomes. But the tumors never completely disappeared.

In 2013, CRISPR-Cas9 gene editing burst onto the scientific scene, and by 2016 McMillan decided to try deploying it against the HPV oncogenes. With CRISPR, “we were actually attacking the very gene, the absolute primary cause of this cancer,” rather than its products, as siRNAs did, says McMillan. His team made guide RNAs targeting the E7 gene and put them into PEGylated liposomes along with the other components needed for CRISPR-Cas9 editing. They then injected the liposomes into the bloodstreams of mice with tumors

The PEG coating falls off within 24 hours of injection, allowing the liposome to merge with tumor cells and release the CRISPR-Cas9 system, shutting down E7. McMillan and graduate student Luqman Jubair gave some of the mice three injections, which caused the tumors’ growth to slow, but still, it didn’t stop. In a separate group of mice given seven injections, the tumors disappeared altogether. “It was like, ‘Holy moly! This is amazing,’” says McMillan. “We kept being amazed each time we did a measurement.”

McMillan says the study is the first example he knows of wiping out cancer in vivo using CRISPR. Edward Stadtmauer, a clinical oncologist and researcher at the University of Pennsylvania who was not involved in this study but recently demonstrated the safe use of CRISPR-edited cells in cancer patients, writes in an email that the work is “certainly innovative” and demonstrates “really interesting delivery of CRISPR technology to tumors in a mouse model.”

McMillan hopes to launch a clinical trial of liposomes delivered via a patch placed on the cervix, rather than intravenously, in the next couple of years, working with Kevin Morris, a gene therapy researcher at City of Hope Hospital in California who wasn’t involved in the current study. “It’s the whole package,” Morris says of McMillan’s study. “He’s shown here that you can obliterate the cancer itself.”

Story by: Rachael Moeller Gorman, The Scientist 

Africa Contributes SARS-CoV-2 Sequencing to COVID-19 Tracking

In recent years, laboratories on the continent have ramped up genomic sequencing capabilities, offering in-country analyses rather than outsourcing the job.

Image from technostalls.com

Three days after the confirmation of Nigeria’s first COVID-19 case, the genome sequencing results of the SARS-CoV-2 specimen were announced on March 1. The sputum samples, taken from an Italian consultant who entered Nigeria through Lagos on February 27 before traveling to the neighboring Ogun State, were analyzed at the African Center of Excellence for Genomics of Infectious Diseases (ACEGID) at Redeemer University. They became the first analysis of SARS-CoV-2 in Africa, signaling the continent’s contribution to the growing global body of evidence to understand the virus’s behavior outside China.

“We have moved from being spectators to contributors and players in the field of infectious disease genomics,” Christian Happi, ACEGID director in Ede, Nigeria, who led the sequencing effort, tells The Scientist.

Whether the tool is used for disease outbreaks or routine surveillance, we now have the capacity to perform in-country sequencing, which has traditionally been done through collaborations with laboratories outside the countries.

—Chikwe Ihekweazu, Nigeria Centre for Disease Control

Nigeria’s demonstration of rapid sequencing during a health emergency shows that African countries have capacities to monitor the progression of an infectious disease outbreak in real time to understand transmission patterns, says Chikwe Ihekweazu, the director general of the Nigeria Centre for Disease Control based in Abuja.

Africa’s ability to sequence its own COVID-19 cases demonstrates that countries in the region have invested in diagnostic capabilities, says Ihekweazu. “Whether the tool is used for disease outbreaks or routine surveillance, we now have the capacity to perform in-country sequencing, which has traditionally been done through collaborations with laboratories outside the countries,” he tells The Scientist.

The Africa Center for Disease Control (CDC) is encouraging countries that have the ability to sequence their own samples to do so, while those that cannot should send their samples to institutions such as ACEGID, Sofonias Kifle Tessema, the head of the genomic sequencing program at Africa CDC, tells The Scientist.

Africa CDC says 4,871 total COVID-19 cases have been reported in 46 African countries with a total of 152 deaths and 340 recoveries as of March 30. ACEGID has enough expertise and equipment to sequence all confirmed cases from Africa so far, but would need more reagents and additional staff to support bigger outbreaks, says Happi. Each sequencing costs about $600 US.

The center got its first equipment and staff in January 2014 from a World Bank investment of $8 million US that was part of a $165 million package for 19 higher education institutions specializing in STEM initiatives in eight West African nations.

The need to enable Africa to contribute to the genomics revolution, and to reduce the knowledge and economic gaps between the rest of the world and Africa, prompted this investment, Happi says. “I wanted to use genomics technologies and to address health problems in Africa, especially infectious disease and facilitate outbreak response,” he says.

Long before the coronavirus epidemic struck, in 2014, ACEGID sequencing gave the first accurate diagnosis of the Ebola virus in Nigeria.

The ability to conduct genomic sequencing locally will contribute to the global fight against COVID-19, says Denis Chopera, the program executive manager of the Sub-Saharan African Network for TB/HIV Research Excellence at the Africa Research Institute (SANTHE) in KwaZulu-Natal in South Africa. “Viruses can easily change form to adapt to the environment and evade recognition by the immune system and drugs so it is crucial to understand all these aspects of this virus,” says Chopera. “Remember, it is a new virus and very little is known about it,” he adds. SANTHE has the expertise and resources for sequencing, but is not actively working on coronavirus samples as all laboratory tests are being conducted by the South Africa’s National Institute for Communicable Diseases.

The World Health Organization has been supporting African governments with early detection by providing thousands of COVID-19 testing kits to countries, training dozens of health workers, and strengthening surveillance in communities, resulting in 46 countries being able test for COVID-19. So far, the number of cases in Africa is dwarfed by those on other continents.

The initial cases detected in Africa were from travelers coming from countries with widespread outbreaks. “The Nigeria virus is similar to the viruses recently circulating in Europe, which is consistent with the travel history of the COVID-19 patient,” Ihekweazu says of the first case.

“I do not think that the sequence can tell us why there are few cases in Africa at this point as it is highly likely that the climate in Africa is the reason. However, we will know whether the virus is changing to adapt to the climate, which is a possibility and this could result in more cases on the African continent,” Chopera tells The Scientist.

Ihekweazu says a number of different factors can be contributing to the limited number of cases detected, and sequencing will provide evidence to show if SARS-CoV-2 is changing, if it’s acquired during hospitalization, and if importations from other countries are still causing outbreaks or if community transmission is driving numbers upward.

For Akebe Luther King Abia, a Cameroonian environmental microbiologist at the University of KwaZulu-Natal in South Africa, the biggest contribution African scientists can bring are their experiences with previous outbreaks such as Ebola. After the first SARS-CoV outbreak of 2003, scientists within the continent started looking for other members of the coronavirus family in bats and developing methods to detect them, for instance. Medical personnel were trained and health infrastructure was improved to handle future emergencies. Following the previous SARS and Ebola outbreaks, Nigeria created the Nigerian Center for Disease Control and established a network of laboratories within the country for rapid identification of cases.

“It is no doubt that most countries on the continent do not have sophisticated equipment, but the fact that they have been exposed to numerous diseases outbreaks has made most of them to be ready with what they have,” Abia tells The Scientist.

Story by: Munyaradzi Makoni, for The Scientist