Enhancing biopharming for an emerging bioeconomy

In the world of health and medicine, the word tobacco usually brings to mind cancer, emphysema and heart disease. But in recent years the plant’s tarnished reputation is getting a makeover from the development of pharmaceuticals through an effective, swift and cost-cutting technique that has been dubbed “biopharming.”

For more than seven years, the CSIR has been at the forefront of biopharming research and development (R&D) in South Africa and has active partnerships with global leaders in the field. Now, the CSIR’s antibody expression platform aims to enhance the organisation’s preparedness for hosting a national biopharming platform in support of an emerging South African bioeconomy. Consequently, the CSIR is poised to play a leadership role in support of the Department of Science and Technology’s new bioeconomy strategy.

According to Dr Tsepo Tsekoa, principal investigator of the antibody expression platform,”Technological development has resulted in plants increasingly becoming an attractive host for the recombinant production of proteins destined for agro-industrial, biomedical and pharmaceutical application. With the recent approval of a number of plant-produced biologics for human health use – and a strong pipeline in clinical trials – the concept of using plants as a source to produce recombinant vaccines and other biopharmaceutical proteins is now being realised. An example of this is the use of antibody-producing tobacco plants employed in the battle against rabies.”

Dr Tsepo Tsekoa

“Plant-based expression systems are relatively inexpensive, readily scalable and fast; leveraging a niche in vaccines for neglected diseases, pandemic vaccines or emerging disease vaccines where other means of production may be too slow to respond or too expensive for mass roll-out,” noted Tsekoa.

Over the next few years, the platform will develop biopharming-related human capital and strengthen state-of-the-art competence through research exchanges; evaluate recombinant vaccine manufacturing technologies for rapid response to pandemic influenza in South Africa; and complete a proof of concept for expression of highly active and broadly neutralising HIV antibodies in preparation for national roll-out in partnership with a large international consortium.

“In addition, the production of ‘biobetters’ – which refers to a recombinant protein drug that is in the same class as an existing biopharmaceutical but is improved over the original, is an attractive option, as plant expression systems have been shown to produce biopharmaceuticals free of human infective viruses, prions and bacterial contaminants such as endotoxins. The technology has the potential to become a commercially attractive and universally accepted approach for vaccine, therapeutic and reagent protein manufacturing,” said Tsekoa.

The CSIR has a sound track record when it comes to biopharming R&D. The organisation has produced vaccines such as RabiVir, a plant-made antibody cocktail for rabies prophylaxis, plant-made subunit animal vaccines as well as a pipeline of other veterinary vaccine production technologies, including virus-like particles.

Story by: Kulani Chauke, Council for Scientific and Industrial Research

Spotlight on malaria case management

The University of Pretoria (UP)’s vision acknowledges this institution’s prominent role in Africa and its commitment to fulfilling its social responsibilities. In this context it is clear that malaria, which has a devastating impact on the health of the citizens and the economies of many African countries, has been and continues to be a significant focus of research at UP. The University of Pretoria Centre for Sustainable Malaria Control (UP CSMC) is currently one of the leaders in malaria research in South Africa and is known for its unique integrated focus on malaria parasite biology, functional genomics, drug discovery efforts, innovative mosquito control strategies, public health management and community engagement. The Centre cooperates closely with the National Department of Health and other partner institutions throughout the country in their efforts to eradicate malaria in South Africa by 2018.

Worldwide an estimated 250 million clinical cases of malaria occur annually, and more than half a million deaths are reported. The majority of these deaths occur in sub-Saharan Africa and the victims are mostly children under the age of five years. Despite a marked reduction in the incidence of malaria over the past decade, fatality rates due to malaria remain high in South Africa. Since the malaria season is currently at its peak, the focus of many health care professionals is firmly on the timely diagnosis and treatment of this disease.

Malaria is endemic in three provinces in South Africa (Limpopo, Mpumalanga and KwaZulu-Natal), but this does not mean that the other provinces are malaria free. The disease is transmitted by female Anopheles mosquitoes that carry the malaria parasite, and although malaria prevention and control strategies are being vigorously implemented in the provinces where malaria is endemic, similar strategies in the rest of the country are unfortunately lagging behind.

It is interesting to note that even though malaria is not endemic in Gauteng, this province is none the less classified as one of the high-incidence malaria areas in South Africa, with most of the reported cases occurring in the Ekurhuleni, Johannesburg and West Rand Districts. More than 80% of the patients diagnosed with malaria in these districts hail from Mozambique and other African countries and have travelled to South Africa in search of employment.

Since many of these migrants are in the country illegally, they are reluctant to seek medical attention when they become ill. This often leads to delayed diagnosis and treatment, and consequently to a high mortality rate among people from this group. Unfortunately the Gauteng Department of Health’s campaign aimed at educating migrants about the disease has been hampered by the fact that they are difficult to reach as they often have no fixed addresses or are afraid of prosecution should their illegal status become known.

In recent years ‘taxi malaria’ or ’Odyssean malaria’ – which refers to malaria transmitted by translocated parasite-carrying mosquitoes – has become another cause for concern in the South African provinces where malaria is non-endemic, since malaria is often excluded as a possible diagnosis in the case of patients who have not visited areas where the disease is endemic. According to the National Institute for Communicable Diseases (NICD), road traffic arriving from areas in and around South Africa where malaria is endemic is a very likely source of most of the infected mosquitoes responsible for Odyssean malaria cases.

As the disease mimics many other conditions, such as influenza, meningitis, viral hepatitis, septicaemia and tick-bite fever, misdiagnosis is common and results in treatment being delayed, which in turn leads to a high incidence of severe and complicated malaria and a high fatality rate.

The Plasmodium falciparum malaria strain, which accounts for the majority of malaria cases in South Africa, causes almost all severe and fatal instances of the disease. Symptoms of malaria typically include fever, rigours, headache and muscle pain, but a definitive diagnosis can usually be made by the detection of the parasite during a microscopic examination of a blood smear, or by using a rapid malaria antigen test. Most hospitals and clinics in the country have the capacity to make a definitive diagnosis by using either one of these methods. Malaria is generally treated with antimalarial drugs combined with medications to control fever, anti-seizure medications when needed, and fluids and electrolytes. The severity of a patient’s condition and the likelihood of chloroquine resistance will determine the types of medication administered.

In October 2014 the UP CSMC was awarded the status of Medical Research Council (MRC) Collaborating Centre for Malaria Research, which means that it is now part of a network of MRC Collaborating Centres for Malaria Research that will collectively provide a multi-disciplinary approach to malaria research; synergise efforts on malaria research to achieve common goals; and facilitate scientific collaboration among malaria researchers in southern Africa. The Centre will also receive funding from the MRC to further develop the infrastructure needed in order to continue to engage in cutting-edge research on innovative, safe and effective vector control methods.

In recent years the management and treatment of malaria has improved significantly and there is even talk of a vaccine that could eradicate the burden of this devastating disease in many of the world’s poorest countries. With the huge increase in available resources and brainpower focused on fighting this disease, it is beginning to seem more likely that the ambitious goal of eradicating malaria by 2018 could indeed be achieved.

Story by: Ansa Heyl, University of Pretoria